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Abstract

A second-order form of discrete Kalman filtering equations is proposed as a candidate state estimator for

efficient simulations of control-structure interactions in coupled physical coordinate configurations as opposed

to decoupled modal coordinates. The resulting matrix equation of the present state estimator consists of the

same symmetric, sparse N x N coupled matrices of the governing structural dynamics equations as opposed

to unsymmetric 2N x 2N state space-based estimators. Thus, in addition to substantial computational

efficiency improvement, the present estimator can be applied to control-structure design optimization for

which the physical coordinates associated with the mass, damping and stiffness matrices of the structure are

needed instead of modal coordinates.
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Introduction

Current practice in the design, modeling and analysis of flexible large space structures is by and large

based on the finite element method and the associated software. The resulting discrete equations of motion

for structures, both in terms of physical coordinates and of modal coordinates, are expressed in a second-

order form. As a result, the structural engineering community has been investing a considerable amount of

research and development resources to develop computer-oriented discrete modeling tools, analysis methods

and interface capabilities with design synthesis procedures; all of these exploiting the characteristics of

second-order models. Recent work in the area of structural dynamics simulation and massively-parallel

processing also rely on the second-order equation forms.

On the other hand, modern linear control theory has its roots firmly in a first-order form of the governing

differential equations, e.g., Kwakernaak and Sivan 1. Thus, several investigators have addressed the issues of

interfacing second-order structural systems and control theory based on the first-order form 2-r. As a result

of these studies, it has become straightforward for one to synthesize direct state feedback based control laws

within the framework of a first-order control theory and then to recast the resulting control laws in terms of

the second-order structural systems.

Unfortunately, controllers based on a first-order state estimator are difficult to express in a pure second-order

form because the first-order estimator implicitly incorporates an additional filter equation 7. However a recent

work by Juang and Maghami s has enabled the first-order filter gain matrices to be synthesized using only

second-order equations. To complement the second-order gain synthesis, the objective of the present paper

is to develop a second-order based simulation procedure for first-order estimators. The particular class of

first-order dynamic compensation chosen for study are the Kalman Filter based state estimators as applied to

second-order structural systems. The proposed procedure permits simulation of first-order estimators with

nearly the same solution procedure used for treating the structural dynamics equation. Hence, the reduced

size of system matrices and the computational techniques that are tailored to sparse second-order structural

systems may be employed. As will be shown, the proposed procedure hinges on discrete time integration

formulas to effectively reduce the continuous time Kalman Filter to a set of second-order difference equations.

The primary goal of the proposed procedure is the incorporation of this general form of state estimation

as a simnlation tool in partitioned control-structure interaction (GSI) analyses. It is expected that Kalman

Filters for real-time control of linear time-invariant systems would be implemented in the most ettlcient form

available, typically a real mode-decoupled state space realization. For analytical studies of CSI systems,

however, where the objective is frequently simultaneous optimization of controls and structures as in Belvin 9,

the use of such a modal form must be weighed against the preprocessing tasks required to generate the model.

In these cases, much more flexible controllers expressed in terms of the physical coordinates instead of the

modal coordinates are sought, ones which can readily adapt to iterative changes in the structural parameters.

One such control law synthesis has been proposed and demonstrated to be effective for CSI optimization 7.

These studies did not account, however, for dynamic compensation when full state feedback control was

utilized. With the discrete Kalman Filter proposed herein, a general form of dynamic compensation can be

integrated into CSI simulation and optimization which does not impose limits on the designs of the feedback

gains or the filter gains.

The paper first reviews of the conventional first-order representation of the continuous second-order structural

equations of motion, in which the state variables are defined as the displacements variables z of the second-

order structural model and the velocities i. An examination of the corresponding first-order Kalman filtering

equations indicates that, due to the difference in the derivative of the estimated displacement (_:_) and the



estimatedvelocity (_:), transformation of the first-order estimator into an equivalent second-order estimator

requires the time derivative of measurement data, a process not recommended for practical implementation.

Next, a transformation via a generalized momentum is introduced to recast the structural equations of motion

in a general first-order setting. It is shown that discrete time numerical integration followed by reduction

of the resulting difference equations circumvents the need for the time derivative of measurements to solve

Kalman filtering equations in a second-order framework. Hence, the Kalman filter equations can be solved

using a second-order solution software package.

Subsequently, computer implementation aspects of the present second-order estimator are presented. Several

computational paths are discussed in the context of discrete and continuous time simulation. For continuous

time control simulation, an equation augmentation is introduced to exploit the symmetry and sparsity of

the attendant matrices by maintaining state dependent control and observer terms on the right-hand-side

(RHS) of the filter equations. In addition, the computational efficiency of the present second-order filter as

compared to the first-order form is presented.

Continuous Formulation of State

Estimators for Structural Systems

Linear, second-order discrete structural models can be expressed as

Mi+Dk,+Kx=Bu+Gw, x(O)=zo, _(0)=_:o (I)

u = -Zlz - Z2:_

with the associated measurements

z = Hlz + H2k + v (2)

where M, D, K are the mass damping and stiffness matrices of size (N x N); z is the structural displacement

vector, (N x 1); u is the active control force (mx 1); B is a constant force distribution matrix (N x m); z

is a set of measurements (r x 1); HI and //2 are the measurement distribution matrices (r x N); Zl and

Z_ are the control feedback gain matrices (mx N); w and v are zero-mean, white Gaussian processes with

their respective covariances Q and R; and the superscript dot designates time differentiation. In the present

study, we will restrict ourselves to the case wherein Q and R are uncorrelated with each other and the initial

conditions z0 and _0 are also themselves jointly Gaussian with known means and covariances.

The conventional representation of (1) in a first-order form is facilitated by

ZI =Z
Mx,2 = M_. : Bu + Gw - Dx2 - Kxx

(3)

which, when cast in a first-order form, can be expressed as

Ei = Fq + [_u + Gw, q = ( Xl X2 )T (4)z= Hq+u

where

[, o] ,]E= 0 ' -D



/_= B ' G

It is well-known that the Kalman filtering equations 1°'11 for (4) can be shown to be (see, e.g., Arnold and

Lauba):

E_ = Ell + [_u + EPHT R-I_. (6)

where

in which U and L are positive definite matrices, _ is the state estimation vector, and the matrix P is

determined by the Pdccati equation 1'3

E_'E T = FPE T + EPF T - EPHT R-I HPE T + GQCr T (8)

The inherent difficulty of reducing the first-order Kalman filtering equations given by (6) to second order

form can be appreciated if one attempts to write (6) in a form introduced in (3):

a) .b) z2 =i=zl-L12

c) M_2 = -Dx.2 -- Kxl + Bfi + ML2Y.

(9)

where

Lt = (HIU + H2S)T R -1, L2 = (HIS T + H2L)T R -1

Note from (9b) that/:2 ¢ _:1- In other words, the time derivative of the estimated displacement (z) is not

the same as the estimated velocity (_); hence, il and/:2 must be treated as two independent variables, an

important observation somehow overlooked in ttashemipour and Laub m.

Of course, although not practical, one can eliminate /:2 from (9). Assuming _1 and kz are differentiable,

differentiate (9b) and multiply both sides by M to obtain

M:kl = Mzz + MLIz (10)

Substituting M_2 from (9c) and/:2 from (9b) in (10) yields

Mkt = -D(zl - LI_.)- Kkl + Bu+ ML2_. + MLIz (11)

which, upon rearrangements, becomes

Mkl + D_I + K_.I = Bu+ ML2"?. + MLI2 + DLI_ (12)

There are two difficulties with the above second-order estimator. First, the numerical solution of (12)

involves the computation of _l when rate measurements are made. The accuracy of this computation is in

general very susceptible to errors caused in numerical differentiation of _1. Second, and most important, the

numerical evaluation of z that is required in (12) assumes that the derivative of measurement information is

available which should be avoided in practice. We now present a computational procedure that circumvents

the need for computing measurement derivatives and that enables one to construct estimators based on the

second-order model form.



Second-Order Transformation of

Continuous Kalman Filtering Equations

This section presents a transformation of the continuous time first-order Kalman filter to a discrete time set of

second-order difference equations for digital implementation. The procedure avoids the need for measurement

derivative information. In addition, the sparsity and symmetry of the original mass, damping and stiffness

matrices can be maintained. Prior to describing the numerical integration procedure, a transformation based

on generalized momenta is presented which is later used to improve computational efficiency of the equation

solution.

Generalized Momenta

Instead of the conventional transformation (3) of the second-order structural system (1) into a first-order

form, let us consider the following generalized momenta (see, e.g., Jensen 13 and Felippa and Park14):

I a) x1:x (13)b) z_ = AM_I +Czl

where A and C are constant matrices to be chosen. Note that AM should be nonsingular in order to obtain

an equivalent form of (1). Time differentiation of (13b) yields

_z = AM_h + Cfq (14)

Substituting (1) via (13a) into (14), one obtains

f_2 = A(Bu -_ Gw) - (AD - C)_, - AKz,

Finally, pairing of (13b) and (15) gives the following first-order form:

The associated Kalman filtering equation can be shown to be of the following form:

;11{AD C_
0,1[i:],

where

L! = (HIU q- H2S)TR -1, L 2 : (_IiS T -{-fI2L)TR -I

and /_l and /{2 correspond to a modified form of measurements expressed as

z = Hlz + H_ = /_lXl -b /_2Z2

where

HI : H1 - H2M-*A-1C, H2 = H2M-1A -1

(15)

(16)

(17)

(IS)



Clearly, as in the conventional first-order form (9), kt and k2 in (17) are now two independent variables.

Specifically, the case of A = M -t and G = 0 corresponds to (3) with x2 = kt. However, as we shall see

below, the Kalman filtering equations based on the generalized momenta (13) offer several computational

advantages over (3).

Numerical Integration

At this juncture it is noted that in the previous section one first performs the elimination of _t in order

to obtain a second-order equation, then performs the numerical solution of the resulting equation. This

approach has the disadvantage of having to deal with the time derivative of measurement data. To avoid

this, we will first integrate numerically the associated Kalman filtering equation (!7).

The direct time integration formula we propose to employ is a mid-point version of the trapezoidal rule:

r ^ ,, n-l-l/2 r - • n " nq-l[2

2: I ZI°, l ,t
b)

/ r_ j t. z2 J _2

(19)

where the superscript n denotes the discrete time interval t" = nh, h is the time increment and 6 = h/2.

It should be noted that we have chosen the trapezoidal rule due to its unconditional stability and high

accuracy while it does not introduce any numerical damping (see, for example, Dahlquist Is and Parkl¢).

Contamination of damping from numerical dissipation can not only adversely affect the solution accuracy

but lead to misinterpretation of the simulation results.

Time discretization of (17) by (19a) at the n + 1[2 time step yields

[ AM )1 [L:]_,+,,2 ( 0 } (20)=,5 AD - C L +6 ABu,.,+II 2

The above difference equations require the solution of matrix equations of 2N variables, namely, in terms

of the two variables _g+l/2 and _,+1/2, each with a size of N. TO reduce the above coupled equations of

order 2N into the corresponding ones of order N, we proceed in the following way by exploiting the nature

of parametric matrices of A and C as introduced in (13). To this end, we write out (20) as two coupled

difference equations as follows:

AM(_?+,I2 _ i:r_)+ 15(C_,_+,l_ _ _g+,12)

= SAMLI_'*+II _ (21)

( AD - C)( i:'_+112 - _c'_) + (it7 +II2 - _:'_) + ,SAKe:? + '/_

= 6(AD - C)L_Y. "+112 + i_L2Y."+1/2 + 8ABu "+I/2 (22)

Multiplying (22) by 5 and adding the resulting equation to (21) yields

A(M + 45D + t_2g)_.? +'12 = (AM + 5(AD - C))_'_ + $_c'_

+{6AMLx + _2( AD - C)L_ +/52L2}_ '"+_/2 + _ ABu "+tl_ (23)



Ofseveralpossiblechoicesfor matricesA and B, we will examine the following two specific cases:

a) A=I, C=D (24)b) A = M -l , C=0

where the mass matrix M is nonsingular due to its physically positive definite nature since the kinetic energy

of structural system is positive for any admissable motion. It is noted that the above two choices, although

mathematically equivalent, lead to different computational implementations as discussed below.

The choice of (24a) reduces (23) to:

(M + _D + _K)i'_ +112 = M_'_ + 6_'_ + 62Bu "+_12

+_{ML1 + _L2)I "+112

so that once i_+_/_ is computed, i_+_/2 is obtained from (22) rewritten as

_,_+_/2= _'3+ @" - 6K_'_+_/_

(25)

(26)

where

§n = Bu,',+ll2 + L_.-+t/2 (27)

which is already computed in order to construct the right-hand side of (25). Hence, K_ +t/_ is the only

additional computation needed to obtain _+1/2. It is noted that neither any numerical differentiation nor

matrix inversion is required in computing _+1/2. This has been achieved through the introduction of the

general transformation (1;3) and the particular choice of the parameter matrices given by (24a).

On the other hand, if one chooses the conventional representation (24b), the solution of _+t/z is obtained

from (23)

(M + 6D + _2K)_'_+'12 = (M + 6D)_ + 6M_

+6{(M + $D)LI + ,SML2}_ +_/2 + ,5_Bu "+t/2

Once _+1/2 is obtained, _+1/2 can be computed either by

(28)

(29)

- n.,I-l/2

which is not accurate due to the numerical differentiation to obtain z_ , or by (22)

_+_1_ = _ + _. _ $M-_ i{_+t/2_

M-' D(fc'_+_l _ _ _'_) + $M-' D LI _"+_1_ (3o)

which involves two additional matrix-vector multiplications, when D ¢ 0, as compared with the choice of

A = I and C = D. Thus (24a) is the preferred representation in a first-order form of the second-order

structural dynamics equations (1) and is used in the remainder of this work.

Decoupling Of Difference Equations

We have seen in the previous section, instead of solving the first-order Kalman filtering equations of 2n

variables for the structural dynamics systems (1), the solution of the implicit time-discrete estimator equation

(25) of n variables can potentially offer a substantial computational saving by exploiting the reduced size



andsparsityof M, D and K. This assumes that i,"+I12 and u"+I12 are available, which is not the case since

at the n th time step

u"+ln = -21_'_ +In _ 22_'_+1/2 (31)

e.+,/2= _ _ f72 ;+,/2 (32)

requires both _+1/2 and _+1/2 even if Z n+ll2 iS assumed to be known from measurements or by solution

of (1). Note in (32), the control gain matrices are transformed by

21 = Z1 - Z2M-IA-IC, 2,2 = Z2M-IA -I

There are two distinct approaches to decouple (25) and (26) as described in the following sections.

Discrete Tiauae Update

For systems utilizing discrete-time (i.e. sample and hold) control, equations (31) and (32) become

Un+I/2 _ "" - (33)"=--Zlxl - Z2_'_

_,_+112= z" - -" - "" (34)-- Hlx I -- H2x_

The time integration step size of the estimator must then be equal to the sample rate of the control, while the

continuous structural equations may also be integrated at the same rate or at some fraction of the sampling

rate for simulation accuracy considerations. For the present purposes, we have assumed that the sampling

interval is the same as the integration time stepsize.

DiScrete time simulation is quite simple to implement as the control force and state corrections are treated

with no approximation on the right-hand-side (RHS) of (25) and (26). Should continuous time simulation

be required, a different approach is necessary.

Continuous Time Update

To simulate the system given in (25) and (26) in continuous time, strictly speaking, one must rearrange

(25) and (26) so that the terms involving _,+1/2 and a_ +1/2 are augmented to the left-hand-side (LHS) of

the equations. However, this augmentation into the solution matrix (M + 6D + $2K) would destroy the

computational advantages of the matrix sparsity and symmetry. Thus, a partitioned solution procedure has

been developed for continuous time simulation as described in Park and Belvin iv. The procedure, briefly

outlined herein, maintains the control force and state correction on the RHS of the equations as follows.

First, _+1/2 and _+1/2 are predicted by

-,,+In -,, -,.,+In -. (35)
Xlp = T. 1 , T'2p = Z 2

However, instead of direct substitution of the above predicted quantity to obtain u_ +112 and 2v +112 based

on (31) and (32), equation augmentations are introduced to improve the accuracy of uv +112 and _v +112.

Of several augmentation procedures that are applicable to construct discrete filters for the computations of

u "+112 and _,+1/2, we substitute (26) into (31) and (32) to obtain

{ = - -
6Bu"+1/2 + 6L2_"+112) (36)

].,_+1/2 _ z.+ln i;ii_:'_+l/2_

_I2(_'_ - 5Ka:_ +112 + SBu '_+11_ + _L_ _'"+_1_)



Rearrangingtheabovecoupledequations,oneobtains

[(I + _'2B) _'_L2 ]Sun+l/_'[&fl2B (I+ 6H2L2) _.i"+'/_ J =

z.+,/__ f_}_ - (f{,- 6[I2K)_7+'I_j

which corresponds to a first order filter to reduce the errors in computing _2 = M_ + Di.

discrete filter for computing u and £"can be obtained by differentiating u and _ to obtain

(37)

A second-order

7 = -2,_, - 2262 (38)

and then substituting it and _ from (17). Subsequently, (19) is applied to integrate the equations for u

and _' which yields

[I+''lB+_fl'lM-iB '(Z,L,+'lLl+6'lM-lL1) ](u _+l/1},5(ff2B + 6[-IiM-iB) X + ,Sfti(L1 + SM-iL2) + i_ff_L2J y,,+l/_ =

{) {o-"- .... { }u" z, lM- txl - onxi - ul I ) _- _lrtx I 0 (39)
_n -- 6 7. •. t,-,'_ .... n+il2....n+l[2, __ _".... n-I-l/] q- Zn+I[2 __ in

I-I1M- _z 2 -- ol_z I IJ_ I ) "I- I121"tz I

The net effects of this augmentation are to filter out the errors committed in estimating both it and _2-

Solution of (39) for u "+ID and _,,+tD permits (25) and (26) to be solved in continuous time for }_,+ID and

_+t/2. Subsequently, (19b) is used for :}_+1 and _+1.

The preceding augmentation (39) leads to an accurate estimate of the control force and state estimation error

correction at the (n+l/2) time step. Although (39) involves the solution of an additional algebraic equation,

the equation size is relatively small ( size = number of actuators (m) plus the number of measurements (r)

). Thus, (39) is an efficient method for continuous time simulation of the Kalman filter equations provided

the size of (39) is significantly lower than the first order form of (4). The next section discusses the relative

efficiency of the present method and the conventional first order solution. More details on the equation

augmentation procedure (39) may be found in Park and Belvin l_.

Finally, it is noted that by following a similar time diseretization procedure adopted for computing _,+1/_

and _+t/2, the structural dynamics equation (1) can be solved by

(M + ,SD + ,52K)x'_ +_1_ = Mx'_ + 5x'_ + ,_Bu ''+'/_x'_+l/= = x'_ + _Bu "+l/= - &Kx_ +l/_
(40)

Thus, numerical solutions of the structural dynamics equation (1) and the filter equation (20) can be carried

out within the second-order solution context, thus realizing substantial computational simplicity compared

with the solution of first-order systems of equations (4) and the corresponding first-order estimator equations

(6).

It is emphasized that the solutions of both the structural displacement • and the reconstructed displacement

employ the same solution matrix, (M + &D + &_K). The computational stability of the present procedure

can be examined as investigated in Park _s and Park and Felippa _9._°. The result, when applied to the present

case, can be stated as

_Amax _< 1 (41)



whereAmaxis themaximumeigenvalueof

(A21+ )`22B+ ZIM-IB)y = 0 (42)

Typically the control laws are formulated in terms of low-frequency response components, viz.,

B (xGTKG (43)

for the displacement feedback case where G is a projection matrix that extracts only low-frequency compo-

nents from the structural stiffness matrix. Hence, )'max is in practice several orders of magnitude smaller

than Pmax of the structural dynamics eigenvalue problem:

pMy : Ky (44)

Considering that a typical explicit algorithm has its stability limit Pmax " h < 2, the maximum step size

allowed by (42) is in fact several orders of magnitude larger than allowed by any explicit algorithm.

Computational Efficiency

Solution of the Kalman filtering equations in second-order form is prompted by the potential gain in com-

putational efficiency due to the beneficial nature of matrix sparsity and symmetry in the solution matrix

of the second-order estimator equations. There is an overhead to be paid for the present second-order pro-

cedure, that is, the additional computations introduced to minimize the control force and state estimation

error terms on the right-hand-side of the resulting discrete equations. The following paragraphs show the

second-order solution is most advantageous for estimator models with sparse coefficient matrices M, D and

K.

Solution of the first order Kalman filter equation (6) or the second-order form (25-26, 39) may be performed

using a time discretization as given by (19). For linear time invariant (LTI) systems, the solution matrix is

decomposed once and subsequently upper and lower triangular system solutions are performed to compute

the estimator state at each time step. Thus, the computations required at each time step result from

calculation of the RHS and subsequent triangular system solutions. For the results that follow, the number

of floating point operations are estimated for LTI systems of order O(N). In addition, it is assumed that the

mass, damping and stiffness matrices (M, D and K) are symmetric and banded with bandwidth aN, where

0 < _ < (0.5 - _')2N "

The first-order Kalman filter equation (6) requires (4N 2 + 2Nr + O(N)) operations at each time step. The

discrete time second-order Kalman filter solution (25-26, 33-34) require (Sa2N2+2aN2+3Nm+4Nr+O(N))

operations and the continuous time second-order Kalman filter (25-26, 39) require (8crN 2 + 2aN 2 + 5Nm +

6Nr + (r + m) 2 + O(N)) operations at each time step. To examine the relative efficiency of the first-order

and second-order forms, several cases are presented as follows.

First, a worst case condition is examined whereby M,D and K are fully populated (c_ = 0.5 - _) and

r = m = N. Only for this extreme condition with large numbers of sensors and actuators relative to the

system order, the first order Kalman filter becomes somewhat more efficient than the second-order discrete

Kalman filter solution presente d herein.

For typical structural systems, M and K are almost always banded. In addition, the number of sensors

and actuators is usually small compared to the system order N. If the number of actuators (m) and the

10



numberof measurements (r) are proportional to the bandwidth ( r = m = aN), the second-order discrete

Kalman filtering equations become computational attractive as long as tr < 0.394. It should be noted that

the larger the size of the structural systems, the smaller the bandwidth becomes, with the range of a to be

0.05 <__ _< 0.15.

Finally, for the special case of modal-based structural models, one has a --4 0. For this case, as long as

sensors and actuators are sufficiently smaller than the modal degrees of freedom, the present second-order

state estimator can be substantially more efficient than the classical first-order form. This is because the

conventional state space-based estimator must deal with a fully coupled nonsymmetric 2N x 2N system

whereas the present second-order estimator deals with a diagonal N x N system. A more detailed discussion

can be found in Belvin 9.

Implementation and Numerical Evaluations

The second-order discrete Kalman filtering equation derived in (25) and (26) have been implemented along

with the stabilized form of the controller u and the filtered measurements _ in such a way the estimator

computational module can be interfaced with the partitioned control-structure interaction simulation package

developed previously by Belying, Park and Belvin it Alvin and Park 21. It is emphasized that the solution

procedure of the present second-order discrete Kalman filtering equations (25) and (26) follows exactly the

same steps as required in the solution of symmetric, sparse structural systems. It is this attribute that makes

the present discrete filter attractive from the simulation viewpoint. For a succinct comparison between the

present CSI simulation procedure and conventional state space-based simulation procedures, the equations

that need to be implemented in both of the procedures are summarized below.

Partitioned Control-Structure Interaction Equations

The partitioned procedure for simulating the control-structure interaction problems developed in Belvin _ and

Park and Belvin 17 exploits the second-order diferential equation form whenever possible as shown below.

Structure: a)
Sensor Output: b)

Estimator: c)

Control Force: d)

Estimation Error: e)

M/i+ Dcl+Kq = f+ Bu + Gw

q(O)= qo, 4(0) = ,io

z=Hx+v

[O 0I]{i}+[D _]{_q}={f+Ou}+[M 0I] [L:] "_

= 0, fi(0) = f(0) + nu(0)

fi + F_M-IBu = F_(M-lp + L2"f) + F,q

H L2-f = - n,M-l(b - Bu) - rid4

(45)

In addition, notice that the control laws (u) and the estimation error (7) are parabolically stabilized and

solved in a separate software module from the estimator and the structural analyzers, thus effectively ren-

dering a computaionally efficient and accurate procedure.

ll



Conventional Control-Structure Interaction Equatloons

In contrast to the partitioned procedure summarized above, conventional control-structure interaction simu-

lation employs a first-order differential equation form as shown below, thus requiring the solution of 2n x 2n)-

system equations for structures and the observer. In addition, the control laws and the estimation errror are

not stabilized, which can give rise to an accumulation of computational errors.

where

and

Structure: a) _ = Ax + Ef+ 13u + (_w

x(0) = x0

Sensor Output: b) z = Hx + v

Estimator: c) x = Ai + Ef+ I3u + L_'

_(0) = 0

Control Force: d) u = -F_

Estimation Error: e) "r = z - H_

H=[Hd H_], L= L2 '

F2]

(46)

Numerical Experiments

The first example is a truss beam shown in Fig. 1, consisting of 8 bays with nodes 1 and 2 fixed for

cantilevered motions. Actuator and sensor locations, as well as their orientation, are given in Table 1.

In the numerical experiments reported herein, we have relied on the Matlab software package 22 for the

synthesis of both the control law gains and the discrete Kalman filter gain matrices. Figures 2, 3 and 4

show the vertical displacement time response at node 9 for open-loop, full state feedback, and dynamically

compensated feedback cases, respectively. In the present pepper, a full state feedback corresponds to the case

for which the number of sensors are the same as the total system degrees of freedom whereas the dynamically

compensated case corresopnds to a smaller number of sensors as compared with the total system degrees of

freedom. Note the effectiveness of the dynamically compensated feedback case with four actuators and six

sensors as indicated in Table 1 by the present second-order discrete Kalman filtering equations as compared

with the full state feedback cases.

Figure 5 illustrates a testbed model of an Earth-pointing satellite. For vibration control, 18 actuators and

18 sensors are configured throughout the system; their locations are provided in Tables 2 and 3. Figures 6, 7,

and 8 are a representative of the responses for open-loop, full state feedback, and dynamically compensated

cases, respectively. In both examples, the estimator states are the estimated physical displacements and

generalized momenta as previously developed, and thus the number of effective states is equal to 2N, where

N is the number of physical displacement variables of the second-order structural system. Therefore, the

Kalman filter for the truss example has 108 states, and the filter for the satellite has 1164 states, a substantial

increase over typical estimator orders for such systems. Further simulations with the present procedure should

12



shedlight ontheperformanceofdynamicallycompensatedfeedbacksystemsforlarge-scalesystemsasthey
arecomputationallymorefeasiblethanheretoforepossible.

Thecomputationaloverheadassociatedwith thefullstatefeedbackvs.theuseofa dynamiccompensation
schemeby the presentKalmanfilteringequationsis reportedin Table4. It is seen that the use of the

present second-order discrete Kalman filtering equations for constructing dynamically compensated control

laws adds computational overhead, only an equivalent of open-loop transient analysis of symmetric sparse

systems of order N instead of 2N x 2N dense systems. This is evidenced in Table 4 in that the normalized

CPU time for the dynamically compensated case (designated as K. Filter) is 63.16 whereas the total CPUs

for the full state feedback case (FSFB) plus that of the open loop dynamic response (Transient) is 64.18.

Summary

The present paper has addressed the advantageous features of employing the same direct time integration al-

gorithm for solving the structural dynamics equations and for integrating the associated continuous Kalman

filtering equations. The time discretization of the resulting Kalman filtering equations is further facilitated

by employing a canonical first-order form via a generalized momenta. When used in conjunction with the

previously developed stabilized form of control laws in Park and Belvin 1_, the present procedure offers a sub-

stantial computational advantage over the simulation methods based on a first-order form when computing

with large (i.e. nearly full system dynamics) and sparse estimator models.

In order to minimize the deleterious effect of numerical damping and phase distortion in the solution of the

discrete Kalman filtering equations, the trapezoidal rule is employed. This is due to the wellknown fact that

the trapezoidal rule conserves the system energy with minimum phase error among all the time integration

formulas of second-order accuracy TM

Computational stability of the present solution method for the filter equation has been assessed based on

the stability analysis result of partitioned solution procedures Is. To obtain a sharper estimate of the stable

integration step size, a more rigorous computational stability analysis is being carried out and will be reported

in the future.
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Table la

Actuator Placement for Truss Example Problem

Actuator Node Component

1 2 y

2 18 y

3 9 y

4 9 z

Table lb

Sensor Placement for Truss Example Problem

Sensor Type Node Component

1 Rate 2 y

2 Rate 18 y

3 Rate 9 y

4 Rate. 9 z

5 Position 9 y

6 Position 9 x



Table 2

Actuator Placement for EPS Example Problem

Actuator Node Component

1 97 x

2 97 z

3 96 x

4 96 z

5 65 y

6 68 y

7 59 y

8 62 y

9 45 y

10 45 z

11 70 y

12 70 z

13 95 z

14 95 y

15 95 z

16 95 Cx

17 95 Cy

18 95 Cz



Table 3

Sensor Placement for EPS Example Problem

Sensor Type Node Component

1 Rate 97 x

2 Rate 97 z

3 Rate 96 z

4 Rate 96 z

5 Rate 65 y

6 Rate 68 y

7 Rate 59 y

8 Rate 62 y

9 Rate 45 y

10 Rate 45 z

11 Rate 70 y

12 Rate 70 z

13 Position 95 x

14 Position 95 y

15 Position 95 z

16 Position 95 ¢_

17 Position 95 Cv

18 Position 95 Cz



Table 4

CPU Results for ACSIS Sequential and Parallel Versions

Problem

Model Type Sequential Parallel

54 DOF Transient 4.5 5.6

Truss FSFB 9.4 10.2

K. Filter 13.0 10.7

582 DOF Transient 98.6 100.3

EPS7 FSFB 190.2 294.5

K. Filter 284.2 321.5
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Truss Model: Open Loop Transient Response
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TrussModel:ControlledResponsewith KalmanFilter
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EPS7 Model: Open Loop Transient Response

1.4

°_ s.0 . i • .

C_ 2.0 :_i:_: :_:._:_':':::

--4.0 .""..... •
_;: . f :

-I.0

0.0 2.0 4.0

' /. °• _ o • •

,.:.:.:..._ ..:._....... _ :....:...

: •

I I I J !

6.0 8.0 I0.

Time, sec

...... u= at Node 45

u_ at Node 45
...... u z at Node 45

Figure 6: EPS TRANSIRNT RESPONSE
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